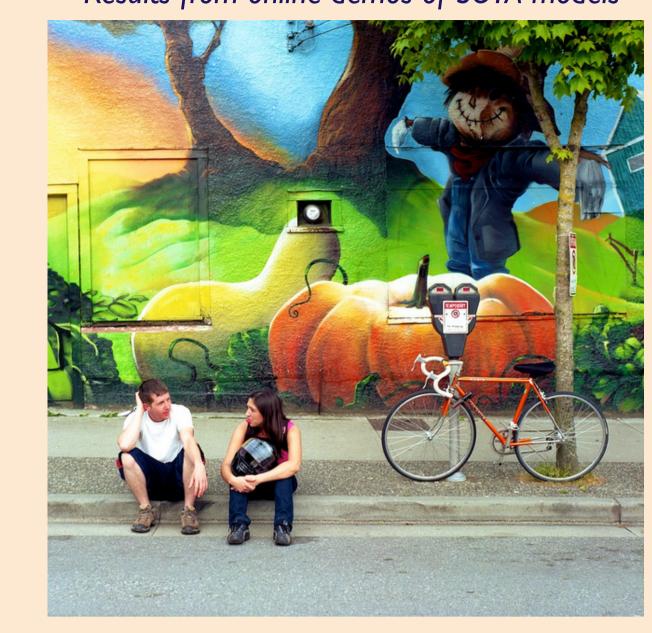


UNIVERSITY OF

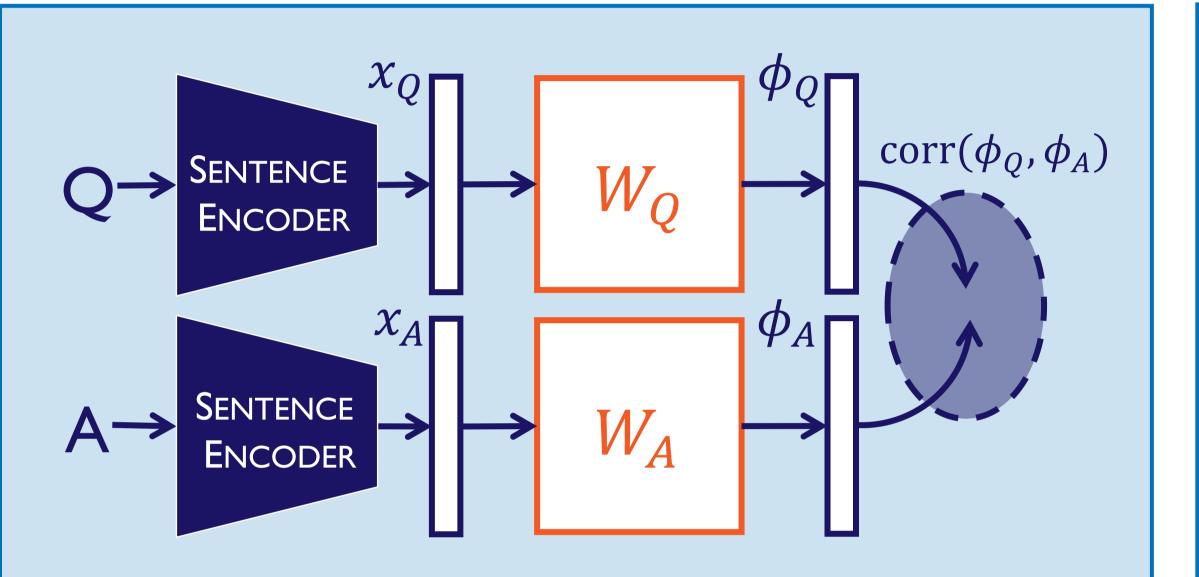
OXFORD

VISUAL DIALOGUE WITHOUT VISION OR DIALOGUE

DANIELA MASSICETI*, PUNEET K. DOKANIA*, N. SIDDHARTH*, PHILIP H.S. TORR DEPARTMENT OF ENGINEERING SCIENCE, UNIVERSITY OF OXFORD


{daniela, puneet, nsid, phst}@robots.ox.ac.uk

CCA FOR VISUAL DIALOGUE (VD)


- Visual Dialogue (VD) involves answering a sequence of questions about an image
- We apply Canonical Correlation Analysis (CCA) to just questions and answers
- Our method:
 - Ignores visual stimulus & dialogue sequence,
 - Does not need gradients,
 - Uses off-the-shelf feature extractors,
 - Uses ~0.009% parameters of state-of-the-art models, and
 - Learns in a few (CPU) seconds.

- Surprisingly good performance highlights implicit dataset biases & quirks of evaluation metrics
- Need for better balanced visuo-linguistic datasets and evaluation protocols

Question	Answer
How old is the baby?	About 2 years old
Where is the train?	On the road
How many cows are there?	Three

CCA vs. SOTA in ranking performance on VisDial

		Model	#params	Time (s)	MR	R@I	R@5	R@10	MRR
	v0.9	HCIAE-G-DIS [3]	2.12×10^{7}	-	14.23	44.35	65.28	71.55	0.5467
OTA		CoAtt-GAN [4]	-	-	14.43	46.10	65.69	71.74	0.5578
S		HREA-QIH-G [5]	2.42×10^{7}	-	16.69	42.28	62.33	68.17	0.5242
	6.	A-Q	1.80×10^{5}	2.0	16.21	16.77	44.86	58.06	0.3031
A	٥ ٥	A-QI (Q)	3.33×10^{5}	3.0	18.29	12.17	35.38	50.57	0.2427
CCA	0.	A-Q	1.80×10^{5}	2.0	17.08	15.95	40.10	55.10	0.2832
	>	A-QI (Q)	3.33×10^{5}	3.0	19.24	12.73	33.05	48.68	0.2393

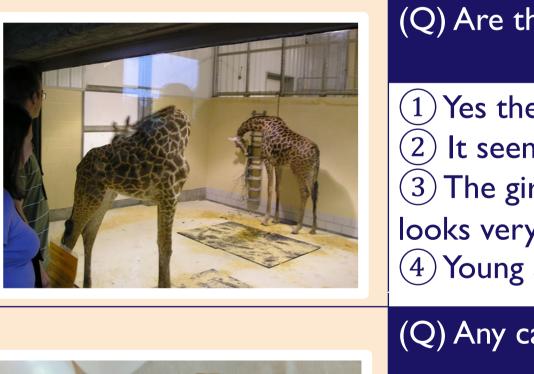
MULTI-VIEW CCA [1,2]

Given question $x_0 \in \mathbb{R}^{n_0 \times 1}$ and answer $x_A \in \mathbb{R}^{n_A \times 1}$, learn projections $W_0 \in \mathbb{R}^{n_0 \times p}$, $W_A \in \mathbb{R}^{n_A \times p}$ where $p \leq \min(n_0, n_A)$ such that $\operatorname{corr}(W_0^T x_0, W_A^T x_A)$, is maximised

$$\begin{bmatrix} \lambda_{1} \cdots \lambda_{p} \cdots \lambda_{n_{Q}+n_{A}} \end{bmatrix}, \begin{bmatrix} v_{1,1} & \dots & v_{1,p} & \dots & v_{1,n_{Q}+n_{A}} \\ \vdots & & \vdots & & \vdots \\ v_{n_{Q},1} & \dots & v_{n_{Q},p} & \dots & v_{n_{Q},n_{Q}+n_{A}} \\ \vdots & & \vdots & & \vdots \\ v_{n_{Q}+n_{A},1} \cdots & v_{n_{Q}+n_{A},p} & \dots & v_{n_{Q}+n_{A},n_{Q}+n_{A}} \end{bmatrix} = EVD \begin{bmatrix} \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} x \end{bmatrix} = \lambda \begin{bmatrix} C_{11} & 0 \\ 0 & C_{22} \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \end{bmatrix}$$

 C_{11}, C_{22} and C_{12}, C_{21} are intra- and inter-view correlation matrices **Projection** $\phi(x_i, W_i) = (W_i D_p^k)^T x_i$ where $D_p^k = diag(\lambda_1^k, \dots, \lambda_p^k)$ and $\lambda_1 \ge \dots \ge \lambda_p$ are eigenvalues and $k \in \mathbb{R}$ is a scaling factor

- **2-view approach can be generalised to views** $x_i \in \mathbb{R}^{n_i}$ and $W_i \in \mathbb{R}^{n_i \times p}$, $i \in \{1, ..., m\}$


EXPERIMENTAL ANALYSES

- Represent answers & questions by average FastText vectors (300D), images by ResNet features (512D)
- **Train**: CCA to learn joint embeddings between:
 - Answers & questions (A-Q, 2-view CCA)
 - Answers, questions & images (A-QI, 3-view CCA)
- **Evaluate**: rank candidate answer set per question using embedding
- Near SOTA MR with ~0.009% parameters & seconds on CPU
- For given question & corresponding candidate answers
 - 96.9% ground-truth answer ranks $< T_c(\sigma^2 = 0.023)$
 - 87.2% ground-truth answer rank $< T_g(\sigma^2 = 0.018)$

where T_c and T_G are ISODATA thresholds computed on VisDial candidates & candidates "generated" by CCA A-Q

Generating plausible answers with CCA

Recalling top-k answers to nearest-neighbour questions in train set

(Q) Are there other animals?
No (G
1 No, there are no other animals
2 No other animals
\bigcirc There are no other animals arour
4 Don't see any animals

(Q) Any candles on the cake? (Q) Is the cake cut? No, but the boy sure Just a large "number one" (GT) has had his hands in it! (GT) (1) There are no candles on the cake (1) No it's not cut (2) I actually do not see any candles (2) No the cake has not been cut (3) Nothing is cut on the cake (3) No, no candles (4) No, the cake is whole (4) No candles

Bad mean rank (MR) doesn't always mean bad answers Top-ranked candidates are plausible, but rank assigned to ground-truth answer is high

	Question	CCA Top-3
	Rank + GT Answer	Rank + Answer
	What colour is the bear? 50 Floral white	 White and brown Brown and white Brown, black and white
	Does she have long hair? (1) No	 No, it is short hair Short No it's short
R BERKELLY BART	Can you see any passengers? ④ Not really	 No Zero No I cannot
	Are there people not on bus? 2 Few	 No people No, there are no people around I don't see any people

CONCLUSIONS

- It is possible to perform "well" without a visual stimulus
- Poor ranking performance doesn't always correspond to poor answers
- Assigning a single ground-truth answer is restrictive VisDial v1.0 ameliorates this with similarity scores for candidate answers
- Embedding space learned by CCA is useful for answer "generation"
- Simple methods like CCA should be used alongside deep approaches

[1] H. Hotelling. Relations between two sets of variates. Biometrika, 1936. [2] J. R. Kettenring. Canonical analysis of several sets of variables. Biometrika, 1971 [3] J. Lu, A. Kannan, J. Yang, D. Parikh, and D. Batra. Best of both worlds: Transferring knowledge from discriminative learning to a generative visual dialog model. In NIPS, 2017. [4] Q.Wu, P.Wang, C. Shen, I. Reid, and A. van den Hengel. Are you talking to me? Reasoned visual dialog generation through adversarial learning. arXiv, 2017. [5] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J.M.F. Moura, D. Parikh, and D. Batra. Visual Dialog. In CVPR, 2017.